1
0
mirror of https://github.com/Zygo/bees.git synced 2025-05-17 21:35:45 +02:00
bees/lib/btrfs-tree.cc
Zygo Blaxell dd08f6379f btrfs-tree: add a method to get root backref items to BtrfsRootFetcher
This complements the already existing support for reading the fields of
a root backref.

Signed-off-by: Zygo Blaxell <bees@furryterror.org>
2025-02-06 22:42:15 -05:00

782 lines
22 KiB
C++

#include "crucible/btrfs-tree.h"
#include "crucible/btrfs.h"
#include "crucible/error.h"
#include "crucible/fs.h"
#include "crucible/hexdump.h"
#include "crucible/seeker.h"
#define CRUCIBLE_BTRFS_TREE_DEBUG(x) do { \
if (BtrfsIoctlSearchKey::s_debug_ostream) { \
(*BtrfsIoctlSearchKey::s_debug_ostream) << x; \
} \
} while (false)
namespace crucible {
using namespace std;
uint64_t
BtrfsTreeItem::extent_begin() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_ITEM_KEY);
return m_objectid;
}
uint64_t
BtrfsTreeItem::extent_end() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_ITEM_KEY);
return m_objectid + m_offset;
}
uint64_t
BtrfsTreeItem::extent_flags() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_ITEM_KEY);
return btrfs_get_member(&btrfs_extent_item::flags, m_data);
}
uint64_t
BtrfsTreeItem::extent_generation() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_ITEM_KEY);
return btrfs_get_member(&btrfs_extent_item::generation, m_data);
}
uint64_t
BtrfsTreeItem::root_ref_dirid() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_ROOT_BACKREF_KEY);
return btrfs_get_member(&btrfs_root_ref::dirid, m_data);
}
string
BtrfsTreeItem::root_ref_name() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_ROOT_BACKREF_KEY);
const auto name_len = btrfs_get_member(&btrfs_root_ref::name_len, m_data);
const auto name_start = sizeof(struct btrfs_root_ref);
const auto name_end = name_len + name_start;
THROW_CHECK2(runtime_error, m_data.size(), name_end, m_data.size() >= name_end);
return string(m_data.data() + name_start, m_data.data() + name_end);
}
uint64_t
BtrfsTreeItem::root_ref_parent_rootid() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_ROOT_BACKREF_KEY);
return offset();
}
uint64_t
BtrfsTreeItem::root_flags() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_ROOT_ITEM_KEY);
return btrfs_get_member(&btrfs_root_item::flags, m_data);
}
uint64_t
BtrfsTreeItem::root_refs() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_ROOT_ITEM_KEY);
return btrfs_get_member(&btrfs_root_item::refs, m_data);
}
ostream &
operator<<(ostream &os, const BtrfsTreeItem &bti)
{
os << "BtrfsTreeItem {"
<< " objectid = " << to_hex(bti.objectid())
<< ", type = " << btrfs_search_type_ntoa(bti.type())
<< ", offset = " << to_hex(bti.offset())
<< ", transid = " << bti.transid()
<< ", data = ";
hexdump(os, bti.data());
return os;
}
uint64_t
BtrfsTreeItem::block_group_flags() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_BLOCK_GROUP_ITEM_KEY);
return btrfs_get_member(&btrfs_block_group_item::flags, m_data);
}
uint64_t
BtrfsTreeItem::block_group_used() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_BLOCK_GROUP_ITEM_KEY);
return btrfs_get_member(&btrfs_block_group_item::used, m_data);
}
uint64_t
BtrfsTreeItem::chunk_length() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_CHUNK_ITEM_KEY);
return btrfs_get_member(&btrfs_chunk::length, m_data);
}
uint64_t
BtrfsTreeItem::chunk_type() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_CHUNK_ITEM_KEY);
return btrfs_get_member(&btrfs_chunk::type, m_data);
}
uint64_t
BtrfsTreeItem::dev_extent_chunk_offset() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_DEV_EXTENT_KEY);
return btrfs_get_member(&btrfs_dev_extent::chunk_offset, m_data);
}
uint64_t
BtrfsTreeItem::dev_extent_length() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_DEV_EXTENT_KEY);
return btrfs_get_member(&btrfs_dev_extent::length, m_data);
}
uint64_t
BtrfsTreeItem::dev_item_total_bytes() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_DEV_ITEM_KEY);
return btrfs_get_member(&btrfs_dev_item::total_bytes, m_data);
}
uint64_t
BtrfsTreeItem::dev_item_bytes_used() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_DEV_ITEM_KEY);
return btrfs_get_member(&btrfs_dev_item::bytes_used, m_data);
}
uint64_t
BtrfsTreeItem::inode_size() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_INODE_ITEM_KEY);
return btrfs_get_member(&btrfs_inode_item::size, m_data);
}
uint64_t
BtrfsTreeItem::file_extent_logical_bytes() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_DATA_KEY);
const auto file_extent_item_type = btrfs_get_member(&btrfs_file_extent_item::type, m_data);
switch (file_extent_item_type) {
case BTRFS_FILE_EXTENT_INLINE:
return btrfs_get_member(&btrfs_file_extent_item::ram_bytes, m_data);
case BTRFS_FILE_EXTENT_PREALLOC:
case BTRFS_FILE_EXTENT_REG:
return btrfs_get_member(&btrfs_file_extent_item::num_bytes, m_data);
default:
THROW_ERROR(runtime_error, "unknown btrfs_file_extent_item type " << file_extent_item_type);
}
}
uint64_t
BtrfsTreeItem::file_extent_offset() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_DATA_KEY);
const auto file_extent_item_type = btrfs_get_member(&btrfs_file_extent_item::type, m_data);
switch (file_extent_item_type) {
case BTRFS_FILE_EXTENT_INLINE:
THROW_ERROR(invalid_argument, "extent is inline " << *this);
case BTRFS_FILE_EXTENT_PREALLOC:
case BTRFS_FILE_EXTENT_REG:
return btrfs_get_member(&btrfs_file_extent_item::offset, m_data);
default:
THROW_ERROR(runtime_error, "unknown btrfs_file_extent_item type " << file_extent_item_type << " in " << *this);
}
}
uint64_t
BtrfsTreeItem::file_extent_generation() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_DATA_KEY);
return btrfs_get_member(&btrfs_file_extent_item::generation, m_data);
}
uint64_t
BtrfsTreeItem::file_extent_bytenr() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_DATA_KEY);
auto file_extent_item_type = btrfs_get_member(&btrfs_file_extent_item::type, m_data);
switch (file_extent_item_type) {
case BTRFS_FILE_EXTENT_INLINE:
THROW_ERROR(invalid_argument, "extent is inline " << *this);
case BTRFS_FILE_EXTENT_PREALLOC:
case BTRFS_FILE_EXTENT_REG:
return btrfs_get_member(&btrfs_file_extent_item::disk_bytenr, m_data);
default:
THROW_ERROR(runtime_error, "unknown btrfs_file_extent_item type " << file_extent_item_type << " in " << *this);
}
}
uint8_t
BtrfsTreeItem::file_extent_type() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_DATA_KEY);
return btrfs_get_member(&btrfs_file_extent_item::type, m_data);
}
btrfs_compression_type
BtrfsTreeItem::file_extent_compression() const
{
THROW_CHECK1(invalid_argument, btrfs_search_type_ntoa(m_type), m_type == BTRFS_EXTENT_DATA_KEY);
return static_cast<btrfs_compression_type>(btrfs_get_member(&btrfs_file_extent_item::compression, m_data));
}
BtrfsTreeItem::BtrfsTreeItem(const BtrfsIoctlSearchHeader &bish) :
m_objectid(bish.objectid),
m_offset(bish.offset),
m_transid(bish.transid),
m_data(bish.m_data),
m_type(bish.type)
{
}
BtrfsTreeItem &
BtrfsTreeItem::operator=(const BtrfsIoctlSearchHeader &bish)
{
m_objectid = bish.objectid;
m_offset = bish.offset;
m_transid = bish.transid;
m_data = bish.m_data;
m_type = bish.type;
return *this;
}
bool
BtrfsTreeItem::operator!() const
{
return m_transid == 0 && m_objectid == 0 && m_offset == 0 && m_type == 0;
}
uint64_t
BtrfsTreeFetcher::block_size() const
{
return m_block_size;
}
BtrfsTreeFetcher::BtrfsTreeFetcher(Fd new_fd) :
m_fd(new_fd)
{
BtrfsIoctlFsInfoArgs bifia;
bifia.do_ioctl(fd());
m_block_size = bifia.sectorsize;
THROW_CHECK1(runtime_error, m_block_size, m_block_size > 0);
// We don't believe sector sizes that aren't multiples of 4K
THROW_CHECK1(runtime_error, m_block_size, (m_block_size % 4096) == 0);
m_lookbehind_size = 128 * 1024;
m_scale_size = m_block_size;
}
Fd
BtrfsTreeFetcher::fd() const
{
return m_fd;
}
void
BtrfsTreeFetcher::fd(Fd fd)
{
m_fd = fd;
}
void
BtrfsTreeFetcher::type(uint8_t type)
{
m_type = type;
}
uint8_t
BtrfsTreeFetcher::type()
{
return m_type;
}
void
BtrfsTreeFetcher::tree(uint64_t tree)
{
m_tree = tree;
}
uint64_t
BtrfsTreeFetcher::tree()
{
return m_tree;
}
void
BtrfsTreeFetcher::transid(uint64_t min_transid, uint64_t max_transid)
{
m_min_transid = min_transid;
m_max_transid = max_transid;
}
uint64_t
BtrfsTreeFetcher::lookbehind_size() const
{
return m_lookbehind_size;
}
void
BtrfsTreeFetcher::lookbehind_size(uint64_t lookbehind_size)
{
m_lookbehind_size = lookbehind_size;
}
uint64_t
BtrfsTreeFetcher::scale_size() const
{
return m_scale_size;
}
void
BtrfsTreeFetcher::scale_size(uint64_t scale_size)
{
m_scale_size = scale_size;
}
void
BtrfsTreeFetcher::fill_sk(BtrfsIoctlSearchKey &sk, uint64_t object)
{
(void)object;
// btrfs allows tree ID 0 meaning the current tree, but we do not.
THROW_CHECK0(invalid_argument, m_tree != 0);
sk.tree_id = m_tree;
sk.min_type = m_type;
sk.max_type = m_type;
sk.min_transid = m_min_transid;
sk.max_transid = m_max_transid;
sk.nr_items = 1;
}
void
BtrfsTreeFetcher::next_sk(BtrfsIoctlSearchKey &key, const BtrfsIoctlSearchHeader &hdr)
{
key.next_min(hdr, m_type);
}
BtrfsTreeItem
BtrfsTreeFetcher::at(uint64_t logical)
{
CRUCIBLE_BTRFS_TREE_DEBUG("at " << logical);
BtrfsIoctlSearchKey &sk = m_sk;
fill_sk(sk, logical);
// Exact match, should return 0 or 1 items
sk.max_type = sk.min_type;
sk.nr_items = 1;
sk.do_ioctl(fd());
THROW_CHECK1(runtime_error, sk.m_result.size(), sk.m_result.size() < 2);
for (const auto &i : sk.m_result) {
if (hdr_logical(i) == logical && hdr_match(i)) {
return i;
}
}
return BtrfsTreeItem();
}
uint64_t
BtrfsTreeFetcher::scale_logical(const uint64_t logical) const
{
THROW_CHECK1(invalid_argument, logical, (logical % m_scale_size) == 0 || logical == s_max_logical);
return logical / m_scale_size;
}
uint64_t
BtrfsTreeFetcher::scaled_max_logical() const
{
return scale_logical(s_max_logical);
}
uint64_t
BtrfsTreeFetcher::unscale_logical(const uint64_t logical) const
{
THROW_CHECK1(invalid_argument, logical, logical <= scaled_max_logical());
if (logical == scaled_max_logical()) {
return s_max_logical;
}
return logical * scale_size();
}
BtrfsTreeItem
BtrfsTreeFetcher::rlower_bound(uint64_t logical)
{
#if 0
static bool btfrlb_debug = getenv("BTFLRB_DEBUG");
#define BTFRLB_DEBUG(x) do { if (btfrlb_debug) cerr << x; } while (false)
#else
#define BTFRLB_DEBUG(x) CRUCIBLE_BTRFS_TREE_DEBUG(x)
#endif
BtrfsTreeItem closest_item;
uint64_t closest_logical = 0;
BtrfsIoctlSearchKey &sk = m_sk;
size_t loops = 0;
BTFRLB_DEBUG("rlower_bound: " << to_hex(logical) << endl);
seek_backward(scale_logical(logical), [&](uint64_t lower_bound, uint64_t upper_bound) {
++loops;
fill_sk(sk, unscale_logical(min(scaled_max_logical(), lower_bound)));
set<uint64_t> rv;
do {
sk.nr_items = 4;
sk.do_ioctl(fd());
BTFRLB_DEBUG("fetch: loop " << loops << " lower_bound..upper_bound " << to_hex(lower_bound) << ".." << to_hex(upper_bound));
for (auto &i : sk.m_result) {
next_sk(sk, i);
const auto this_logical = hdr_logical(i);
const auto scaled_hdr_logical = scale_logical(this_logical);
BTFRLB_DEBUG(" " << to_hex(scaled_hdr_logical));
if (hdr_match(i)) {
if (this_logical <= logical && this_logical > closest_logical) {
closest_logical = this_logical;
closest_item = i;
}
BTFRLB_DEBUG("(match)");
rv.insert(scaled_hdr_logical);
}
if (scaled_hdr_logical > upper_bound || hdr_stop(i)) {
if (scaled_hdr_logical >= upper_bound) {
BTFRLB_DEBUG("(" << to_hex(scaled_hdr_logical) << " >= " << to_hex(upper_bound) << ")");
}
if (hdr_stop(i)) {
rv.insert(numeric_limits<uint64_t>::max());
BTFRLB_DEBUG("(stop)");
}
break;
} else {
BTFRLB_DEBUG("(cont'd)");
}
}
BTFRLB_DEBUG(endl);
// We might get a search result that contains only non-matching items.
// Keep looping until we find any matching item or we run out of tree.
} while (rv.empty() && !sk.m_result.empty());
return rv;
}, scale_logical(lookbehind_size()));
return closest_item;
#undef BTFRLB_DEBUG
}
BtrfsTreeItem
BtrfsTreeFetcher::lower_bound(uint64_t logical)
{
BtrfsIoctlSearchKey &sk = m_sk;
fill_sk(sk, logical);
do {
assert(sk.max_offset == s_max_logical);
sk.do_ioctl(fd());
for (const auto &i : sk.m_result) {
if (hdr_match(i)) {
return i;
}
if (hdr_stop(i)) {
return BtrfsTreeItem();
}
next_sk(sk, i);
}
} while (!sk.m_result.empty());
return BtrfsTreeItem();
}
BtrfsTreeItem
BtrfsTreeFetcher::next(uint64_t logical)
{
CRUCIBLE_BTRFS_TREE_DEBUG("next " << logical);
const auto scaled_logical = scale_logical(logical);
if (scaled_logical + 1 > scaled_max_logical()) {
return BtrfsTreeItem();
}
return lower_bound(unscale_logical(scaled_logical + 1));
}
BtrfsTreeItem
BtrfsTreeFetcher::prev(uint64_t logical)
{
CRUCIBLE_BTRFS_TREE_DEBUG("prev " << logical);
const auto scaled_logical = scale_logical(logical);
if (scaled_logical < 1) {
return BtrfsTreeItem();
}
return rlower_bound(unscale_logical(scaled_logical - 1));
}
void
BtrfsTreeObjectFetcher::fill_sk(BtrfsIoctlSearchKey &sk, uint64_t object)
{
BtrfsTreeFetcher::fill_sk(sk, object);
sk.min_offset = 0;
sk.max_offset = numeric_limits<decltype(sk.max_offset)>::max();
sk.min_objectid = object;
sk.max_objectid = numeric_limits<decltype(sk.max_objectid)>::max();
}
uint64_t
BtrfsTreeObjectFetcher::hdr_logical(const BtrfsIoctlSearchHeader &hdr)
{
return hdr.objectid;
}
bool
BtrfsTreeObjectFetcher::hdr_match(const BtrfsIoctlSearchHeader &hdr)
{
// If you're calling this method without overriding it, you should have set type first
assert(m_type);
return hdr.type == m_type;
}
bool
BtrfsTreeObjectFetcher::hdr_stop(const BtrfsIoctlSearchHeader &hdr)
{
return false;
(void)hdr;
}
uint64_t
BtrfsTreeOffsetFetcher::hdr_logical(const BtrfsIoctlSearchHeader &hdr)
{
return hdr.offset;
}
bool
BtrfsTreeOffsetFetcher::hdr_match(const BtrfsIoctlSearchHeader &hdr)
{
assert(m_type);
return hdr.type == m_type && hdr.objectid == m_objectid;
}
bool
BtrfsTreeOffsetFetcher::hdr_stop(const BtrfsIoctlSearchHeader &hdr)
{
assert(m_type);
return hdr.objectid > m_objectid || hdr.type > m_type;
}
void
BtrfsTreeOffsetFetcher::objectid(uint64_t objectid)
{
m_objectid = objectid;
}
uint64_t
BtrfsTreeOffsetFetcher::objectid() const
{
return m_objectid;
}
void
BtrfsTreeOffsetFetcher::fill_sk(BtrfsIoctlSearchKey &sk, uint64_t offset)
{
BtrfsTreeFetcher::fill_sk(sk, offset);
sk.min_offset = offset;
sk.max_offset = numeric_limits<decltype(sk.max_offset)>::max();
sk.min_objectid = m_objectid;
sk.max_objectid = m_objectid;
}
void
BtrfsCsumTreeFetcher::get_sums(uint64_t const logical, size_t count, function<void(uint64_t logical, const uint8_t *buf, size_t bytes)> output)
{
#if 0
static bool bctfgs_debug = getenv("BCTFGS_DEBUG");
#define BCTFGS_DEBUG(x) do { if (bctfgs_debug) cerr << x; } while (false)
#else
#define BCTFGS_DEBUG(x) CRUCIBLE_BTRFS_TREE_DEBUG(x)
#endif
const uint64_t logical_end = logical + count * block_size();
BtrfsTreeItem bti = rlower_bound(logical);
size_t __attribute__((unused)) loops = 0;
BCTFGS_DEBUG("get_sums " << to_hex(logical) << ".." << to_hex(logical_end) << endl);
while (!!bti) {
BCTFGS_DEBUG("get_sums[" << loops << "]: " << bti << endl);
++loops;
// Reject wrong type or objectid
THROW_CHECK1(runtime_error, bti.type(), bti.type() == BTRFS_EXTENT_CSUM_KEY);
THROW_CHECK1(runtime_error, bti.objectid(), bti.objectid() == BTRFS_EXTENT_CSUM_OBJECTID);
// Is this object in range?
const uint64_t data_logical = bti.offset();
if (data_logical >= logical_end) {
// csum object is past end of range, we are done
return;
}
// Figure out how long this csum item is in various units
const size_t csum_byte_count = bti.data().size();
THROW_CHECK1(runtime_error, csum_byte_count, (csum_byte_count % m_sum_size) == 0);
THROW_CHECK1(runtime_error, csum_byte_count, csum_byte_count > 0);
const size_t csum_count = csum_byte_count / m_sum_size;
const uint64_t data_byte_count = csum_count * block_size();
const uint64_t data_logical_end = data_logical + data_byte_count;
if (data_logical_end <= logical) {
// too low, look at next item
bti = lower_bound(logical);
continue;
}
// There is some overlap?
const uint64_t overlap_begin = max(logical, data_logical);
const uint64_t overlap_end = min(logical_end, data_logical_end);
THROW_CHECK2(runtime_error, overlap_begin, overlap_end, overlap_begin < overlap_end);
const uint64_t overlap_offset = overlap_begin - data_logical;
THROW_CHECK1(runtime_error, overlap_offset, (overlap_offset % block_size()) == 0);
const uint64_t overlap_index = overlap_offset * m_sum_size / block_size();
const uint64_t overlap_byte_count = overlap_end - overlap_begin;
const uint64_t overlap_csum_byte_count = overlap_byte_count * m_sum_size / block_size();
// Can't be bigger than a btrfs item
THROW_CHECK1(runtime_error, overlap_index, overlap_index < 65536);
THROW_CHECK1(runtime_error, overlap_csum_byte_count, overlap_csum_byte_count < 65536);
// Yes, process the overlap
output(overlap_begin, bti.data().data() + overlap_index, overlap_csum_byte_count);
// Advance
bti = lower_bound(overlap_end);
}
#undef BCTFGS_DEBUG
}
uint32_t
BtrfsCsumTreeFetcher::sum_type() const
{
return m_sum_type;
}
size_t
BtrfsCsumTreeFetcher::sum_size() const
{
return m_sum_size;
}
BtrfsCsumTreeFetcher::BtrfsCsumTreeFetcher(const Fd &new_fd) :
BtrfsTreeOffsetFetcher(new_fd)
{
type(BTRFS_EXTENT_CSUM_KEY);
tree(BTRFS_CSUM_TREE_OBJECTID);
objectid(BTRFS_EXTENT_CSUM_OBJECTID);
BtrfsIoctlFsInfoArgs bifia;
bifia.do_ioctl(fd());
m_sum_type = static_cast<btrfs_compression_type>(bifia.csum_type());
m_sum_size = bifia.csum_size();
if (m_sum_type == BTRFS_CSUM_TYPE_CRC32 && m_sum_size == 0) {
// Older kernel versions don't fill in this field
m_sum_size = 4;
}
THROW_CHECK1(runtime_error, m_sum_size, m_sum_size > 0);
}
BtrfsExtentItemFetcher::BtrfsExtentItemFetcher(const Fd &new_fd) :
BtrfsTreeObjectFetcher(new_fd)
{
tree(BTRFS_EXTENT_TREE_OBJECTID);
type(BTRFS_EXTENT_ITEM_KEY);
}
BtrfsExtentDataFetcher::BtrfsExtentDataFetcher(const Fd &new_fd) :
BtrfsTreeOffsetFetcher(new_fd)
{
type(BTRFS_EXTENT_DATA_KEY);
}
BtrfsInodeFetcher::BtrfsInodeFetcher(const Fd &fd) :
BtrfsTreeObjectFetcher(fd)
{
type(BTRFS_INODE_ITEM_KEY);
scale_size(1);
}
BtrfsTreeItem
BtrfsInodeFetcher::stat(uint64_t subvol, uint64_t inode)
{
tree(subvol);
const auto item = at(inode);
if (!!item) {
THROW_CHECK2(runtime_error, item.objectid(), inode, inode == item.objectid());
THROW_CHECK2(runtime_error, item.type(), BTRFS_INODE_ITEM_KEY, item.type() == BTRFS_INODE_ITEM_KEY);
}
return item;
}
BtrfsRootFetcher::BtrfsRootFetcher(const Fd &fd) :
BtrfsTreeObjectFetcher(fd)
{
tree(BTRFS_ROOT_TREE_OBJECTID);
scale_size(1);
}
BtrfsTreeItem
BtrfsRootFetcher::root(const uint64_t subvol)
{
const auto my_type = BTRFS_ROOT_ITEM_KEY;
type(my_type);
const auto item = at(subvol);
if (!!item) {
THROW_CHECK2(runtime_error, item.objectid(), subvol, subvol == item.objectid());
THROW_CHECK2(runtime_error, item.type(), my_type, item.type() == my_type);
}
return item;
}
BtrfsTreeItem
BtrfsRootFetcher::root_backref(const uint64_t subvol)
{
const auto my_type = BTRFS_ROOT_BACKREF_KEY;
type(my_type);
const auto item = at(subvol);
if (!!item) {
THROW_CHECK2(runtime_error, item.objectid(), subvol, subvol == item.objectid());
THROW_CHECK2(runtime_error, item.type(), my_type, item.type() == my_type);
}
return item;
}
BtrfsDataExtentTreeFetcher::BtrfsDataExtentTreeFetcher(const Fd &fd) :
BtrfsExtentItemFetcher(fd),
m_chunk_tree(fd)
{
tree(BTRFS_EXTENT_TREE_OBJECTID);
type(BTRFS_EXTENT_ITEM_KEY);
m_chunk_tree.tree(BTRFS_CHUNK_TREE_OBJECTID);
m_chunk_tree.type(BTRFS_CHUNK_ITEM_KEY);
m_chunk_tree.objectid(BTRFS_FIRST_CHUNK_TREE_OBJECTID);
}
void
BtrfsDataExtentTreeFetcher::next_sk(BtrfsIoctlSearchKey &key, const BtrfsIoctlSearchHeader &hdr)
{
key.min_type = key.max_type = type();
key.max_objectid = key.max_offset = numeric_limits<uint64_t>::max();
key.min_offset = 0;
key.min_objectid = hdr.objectid;
const auto step = scale_size();
if (key.min_objectid < numeric_limits<uint64_t>::max() - step) {
key.min_objectid += step;
} else {
key.min_objectid = numeric_limits<uint64_t>::max();
}
// If we're still in our current block group, check here
if (!!m_current_bg) {
const auto bg_begin = m_current_bg.offset();
const auto bg_end = bg_begin + m_current_bg.chunk_length();
// If we are still in our current block group, return early
if (key.min_objectid >= bg_begin && key.min_objectid < bg_end) return;
}
// We don't have a current block group or we're out of range
// Find the chunk that this bytenr belongs to
m_current_bg = m_chunk_tree.rlower_bound(key.min_objectid);
// Make sure it's a data block group
while (!!m_current_bg) {
// Data block group, stop here
if (m_current_bg.chunk_type() & BTRFS_BLOCK_GROUP_DATA) break;
// Not a data block group, skip to end
key.min_objectid = m_current_bg.offset() + m_current_bg.chunk_length();
m_current_bg = m_chunk_tree.lower_bound(key.min_objectid);
}
if (!m_current_bg) {
// Ran out of data block groups, stop here
return;
}
// Check to see if bytenr is in the current data block group
const auto bg_begin = m_current_bg.offset();
if (key.min_objectid < bg_begin) {
// Move forward to start of data block group
key.min_objectid = bg_begin;
}
}
}