1
0
mirror of https://github.com/Zygo/bees.git synced 2025-05-17 13:25:45 +02:00
bees/include/crucible/resource.h
2016-11-17 12:12:13 -05:00

388 lines
11 KiB
C++

#ifndef CRUCIBLE_RESOURCE_H
#define CRUCIBLE_RESOURCE_H
#include "crucible/error.h"
#include <cassert>
#include <map>
#include <memory>
#include <mutex>
#include <iostream>
namespace crucible {
using namespace std;
// Template classes for non-copiable resource owner objects
// for objects with process-wide unique names.
// Everything we need to know about Key and Resource.
// Specialize this template for your Resource class.
template <class Key, class Resource>
struct ResourceTraits {
// How to get the Key out of a Resource owner.
// If the owner owns no resource, returns "null" for "no Resource."
Key get_key(const Resource &res) const;
// How to construct a new Resource owner given _only_ the key.
// Usually just calls make_shared<Resource>(key).
shared_ptr<Resource> make_resource(const Key &key) const;
// Test a Key value to see if it is null (no active Resource has this Key value).
// Usually an equality test with get_null_key(), but sometimes many Key values are equivalent to null.
bool is_null_key(const Key &key) const;
// is_null_key(get_null_key()) == true
Key get_null_key() const;
};
template <class Key, class Resource>
class ResourceHandle {
public:
using key_type = Key;
using resource_type = Resource;
using resource_ptr_type = shared_ptr<Resource>;
private:
using traits_type = ResourceTraits<Key, Resource>;
class ResourceHolder {
resource_ptr_type m_ptr;
public:
~ResourceHolder();
ResourceHolder(resource_ptr_type that);
ResourceHolder(const ResourceHolder &that) = default;
ResourceHolder(ResourceHolder &&that) = default;
ResourceHolder& operator=(ResourceHolder &&that) = default;
ResourceHolder& operator=(const ResourceHolder &that) = default;
resource_ptr_type get_resource_ptr() const;
};
using holder_ptr_type = shared_ptr<ResourceHolder>;
using weak_holder_ptr_type = weak_ptr<ResourceHolder>;
using map_type = map<key_type, weak_holder_ptr_type>;
// The only instance variable
holder_ptr_type m_ptr;
// A bunch of static variables and functions
static mutex &s_mutex();
static shared_ptr<map_type> s_map();
static holder_ptr_type insert(const key_type &key);
static holder_ptr_type insert(const resource_ptr_type &res);
static void erase(const key_type &key);
static ResourceTraits<Key, Resource> s_traits;
public:
// test for resource. A separate operator because key_type could be confused with bool.
bool operator!() const;
// get key_type for an active resource or null
key_type get_key() const;
// conversion/assignment to and from key_type
operator key_type() const;
ResourceHandle(const key_type &key);
ResourceHandle& operator=(const key_type &key);
// conversion to/from resource_ptr_type
ResourceHandle(const resource_ptr_type &res);
ResourceHandle& operator=(const resource_ptr_type &res);
// default constructor is public
ResourceHandle() = default;
// forward anything else to the Resource constructor
// if we can do so unambiguously
template<class A1, class A2, class... Args>
ResourceHandle(A1 a1, A2 a2, Args... args) : ResourceHandle( make_shared<Resource>(a1, a2, args...) )
{
}
// forward anything else to a Resource factory method
template<class... Args>
static
ResourceHandle
make(Args... args) {
return ResourceHandle( make_shared<Resource>(args...) );
}
// get pointer to Resource object (nothrow, result may be null)
resource_ptr_type get_resource_ptr() const;
// this version throws and is probably not thread safe
resource_ptr_type operator->() const;
// dynamic casting of the resource (throws if cast fails)
template <class T> shared_ptr<T> cast() const;
};
template <class Key, class Resource>
Key
ResourceTraits<Key, Resource>::get_key(const Resource &res) const
{
return res.get_key();
}
template <class Key, class Resource>
shared_ptr<Resource>
ResourceTraits<Key, Resource>::make_resource(const Key &key) const
{
return make_shared<Resource>(key);
}
template <class Key, class Resource>
bool
ResourceTraits<Key, Resource>::is_null_key(const Key &key) const
{
return !key;
}
template <class Key, class Resource>
Key
ResourceTraits<Key, Resource>::get_null_key() const
{
return NULL;
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::ResourceHolder::ResourceHolder(resource_ptr_type that) :
m_ptr(that)
{
// Cannot insert ourselves here since our shared_ptr does not exist yet.
}
template <class Key, class Resource>
mutex &
ResourceHandle<Key, Resource>::s_mutex()
{
static mutex gcc_won_t_instantiate_this_either;
return gcc_won_t_instantiate_this_either;
}
template <class Key, class Resource>
shared_ptr<typename ResourceHandle<Key, Resource>::map_type>
ResourceHandle<Key, Resource>::s_map()
{
static shared_ptr<map_type> gcc_won_t_instantiate_the_damn_static_vars;
if (!gcc_won_t_instantiate_the_damn_static_vars) {
gcc_won_t_instantiate_the_damn_static_vars = make_shared<map_type>();
}
return gcc_won_t_instantiate_the_damn_static_vars;
}
template <class Key, class Resource>
void
ResourceHandle<Key, Resource>::erase(const key_type &key)
{
unique_lock<mutex> lock(s_mutex());
// Resources are allowed to set their Keys to null.
if (s_traits.is_null_key(key)) {
// Clean out any dead weak_ptr objects.
for (auto i = s_map()->begin(); i != s_map()->end(); ) {
if (! (*i).second.lock()) {
i = s_map()->erase(i);
} else {
++i;
}
}
return;
}
auto erased = s_map()->erase(key);
if (erased != 1) {
cerr << __PRETTY_FUNCTION__ << ": WARNING: s_map()->erase(" << key << ") returned " << erased << " != 1" << endl;
}
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::ResourceHolder::~ResourceHolder()
{
if (!m_ptr) {
// Probably something harmless like a failed constructor.
cerr << __PRETTY_FUNCTION__ << ": WARNING: destroying null m_ptr" << endl;
return;
}
Key key = s_traits.get_key(*m_ptr);
ResourceHandle::erase(key);
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::holder_ptr_type
ResourceHandle<Key, Resource>::insert(const key_type &key)
{
// no Resources for null keys
if (s_traits.is_null_key(key)) {
return holder_ptr_type();
}
unique_lock<mutex> lock(s_mutex());
// find ResourceHolder for non-null key
auto found = s_map()->find(key);
if (found != s_map()->end()) {
holder_ptr_type rv = (*found).second.lock();
// a weak_ptr may have expired
if (rv) {
return rv;
}
}
// not found or expired, throw any existing ref away and make a new one
resource_ptr_type rpt = s_traits.make_resource(key);
holder_ptr_type hpt = make_shared<ResourceHolder>(rpt);
// store weak_ptr in map
(*s_map())[key] = hpt;
// return shared_ptr
return hpt;
};
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::holder_ptr_type
ResourceHandle<Key, Resource>::insert(const resource_ptr_type &res)
{
// no Resource, no ResourceHolder.
if (!res) {
return holder_ptr_type();
}
// no ResourceHolders for null keys either.
key_type key = s_traits.get_key(*res);
if (s_traits.is_null_key(key)) {
return holder_ptr_type();
}
unique_lock<mutex> lock(s_mutex());
// find ResourceHolder for non-null key
auto found = s_map()->find(key);
if (found != s_map()->end()) {
holder_ptr_type rv = (*found).second.lock();
// The map doesn't own the ResourceHolders, the ResourceHandles do.
// It's OK for the map to contain an expired weak_ptr to some dead ResourceHolder...
if (rv) {
// found ResourceHolder, look at pointer
resource_ptr_type rp = rv->get_resource_ptr();
// We do not store references to null Resources.
assert(rp);
// Key retrieved for an existing object must match key searched or be null.
key_type found_key = s_traits.get_key(*rp);
bool found_key_is_null = s_traits.is_null_key(found_key);
assert(found_key_is_null || found_key == key);
if (!found_key_is_null) {
// We do not store references to duplicate resources.
if (rp.owner_before(res) || res.owner_before(rp)) {
cerr << "inserting new Resource with existing Key " << key << " not allowed at " << __PRETTY_FUNCTION__ << endl;;
abort();
// THROW_ERROR(out_of_range, "inserting new Resource with existing Key " << key << " not allowed at " << __PRETTY_FUNCTION__);
}
// rv is good, return it
return rv;
}
}
}
// not found or expired, make a new one
holder_ptr_type rv = make_shared<ResourceHolder>(res);
s_map()->insert(make_pair(key, weak_holder_ptr_type(rv)));
// no need to check s_map result, we are either replacing a dead weak_ptr or adding a new one
return rv;
};
template <class Key, class Resource>
ResourceHandle<Key, Resource>::ResourceHandle(const key_type &key)
{
m_ptr = insert(key);
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>&
ResourceHandle<Key, Resource>::operator=(const key_type &key)
{
m_ptr = insert(key);
return *this;
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::ResourceHandle(const resource_ptr_type &res)
{
m_ptr = insert(res);
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>&
ResourceHandle<Key, Resource>::operator=(const resource_ptr_type &res)
{
m_ptr = insert(res);
return *this;
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::resource_ptr_type
ResourceHandle<Key, Resource>::ResourceHolder::get_resource_ptr() const
{
return m_ptr;
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::resource_ptr_type
ResourceHandle<Key, Resource>::get_resource_ptr() const
{
if (!m_ptr) {
return resource_ptr_type();
}
return m_ptr->get_resource_ptr();
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::resource_ptr_type
ResourceHandle<Key, Resource>::operator->() const
{
resource_ptr_type rp = get_resource_ptr();
if (!rp) {
THROW_ERROR(out_of_range, __PRETTY_FUNCTION__ << " called on null Resource");
}
return rp;
}
template <class Key, class Resource>
template <class T>
shared_ptr<T>
ResourceHandle<Key, Resource>::cast() const
{
shared_ptr<T> dp;
resource_ptr_type rp = get_resource_ptr();
if (!rp) {
return dp;
}
dp = dynamic_pointer_cast<T>(rp);
if (!dp) {
throw bad_cast();
}
return dp;
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::key_type
ResourceHandle<Key, Resource>::get_key() const
{
resource_ptr_type rp = get_resource_ptr();
if (!rp) {
return s_traits.get_null_key();
} else {
return s_traits.get_key(*rp);
}
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::operator key_type() const
{
return get_key();
}
template <class Key, class Resource>
bool
ResourceHandle<Key, Resource>::operator!() const
{
return s_traits.is_null_key(operator key_type());
}
template <class Key, class Resource>
ResourceTraits<Key, Resource> ResourceHandle<Key, Resource>::s_traits;
}
#endif // RESOURCE_H