1
0
mirror of https://github.com/Zygo/bees.git synced 2025-05-17 13:25:45 +02:00
bees/include/crucible/resource.h
Zygo Blaxell c477618924 crucible: resource: optimize map cleanup
We were holding weak refs until the next time the resource ID was used.
This is a bad thing if resource IDs are sparse (e.g. pointers or hashes)
because we'll never see an ID twice.

To fix, determine whether we released the last instance of a resource,
and if so, free its weak ref immediately.

Signed-off-by: Zygo Blaxell <bees@furryterror.org>
2018-01-17 22:30:07 -05:00

364 lines
9.6 KiB
C++

#ifndef CRUCIBLE_RESOURCE_H
#define CRUCIBLE_RESOURCE_H
#include "crucible/error.h"
#include <cassert>
#include <map>
#include <memory>
#include <mutex>
#include <iostream>
#include <stdexcept>
namespace crucible {
using namespace std;
// Template classes for non-copiable resource owner objects
// for objects with process-wide unique names.
// Everything we need to know about Key and Resource.
// Specialize this template for your Resource class.
template <class Key, class Resource>
struct ResourceTraits {
// How to get the Key out of a Resource owner.
// If the owner owns no resource, returns "null" for "no Resource."
Key get_key(const Resource &res) const;
// How to construct a new Resource owner given _only_ the key.
// Usually just calls make_shared<Resource>(key).
shared_ptr<Resource> make_resource(const Key &key) const;
// Test a Key value to see if it is null (no active Resource has this Key value).
// Usually an equality test with get_null_key(), but sometimes many Key values are equivalent to null.
bool is_null_key(const Key &key) const;
// is_null_key(get_null_key()) == true
Key get_null_key() const;
};
template <class Key, class Resource>
class ResourceHandle {
public:
using key_type = Key;
using resource_type = Resource;
using resource_ptr_type = shared_ptr<Resource>;
private:
using traits_type = ResourceTraits<Key, Resource>;
using weak_ptr_type = weak_ptr<Resource>;
using map_type = map<key_type, weak_ptr_type>;
// The only instance variable
resource_ptr_type m_ptr;
// A bunch of static variables and functions
static mutex s_map_mutex;
static map_type s_map;
static resource_ptr_type insert(const key_type &key);
static resource_ptr_type insert(const resource_ptr_type &res);
static void clean_locked();
static ResourceTraits<Key, Resource> s_traits;
public:
// Exceptions
struct duplicate_resource : public invalid_argument {
key_type m_key;
key_type get_key() const;
duplicate_resource(const key_type &key);
};
// test for resource. A separate operator because key_type could be confused with bool.
bool operator!() const;
// get key_type for an active resource or null
key_type get_key() const;
// conversion/assignment to and from key_type
operator key_type() const;
ResourceHandle(const key_type &key);
ResourceHandle& operator=(const key_type &key);
// conversion to/from resource_ptr_type
ResourceHandle(const resource_ptr_type &res);
ResourceHandle& operator=(const resource_ptr_type &res);
// default construct/assign/move is public and mostly harmless
ResourceHandle() = default;
ResourceHandle(const ResourceHandle &that) = default;
ResourceHandle(ResourceHandle &&that) = default;
ResourceHandle& operator=(const ResourceHandle &that) = default;
ResourceHandle& operator=(ResourceHandle &&that) = default;
// Nontrivial destructor
~ResourceHandle();
// forward anything else to the Resource constructor
// if we can do so unambiguously
template<class A1, class A2, class... Args>
ResourceHandle(A1 a1, A2 a2, Args... args) : ResourceHandle( make_shared<Resource>(a1, a2, args...) )
{
}
// forward anything else to a Resource factory method
template<class... Args>
static
ResourceHandle
make(Args... args) {
return ResourceHandle( make_shared<Resource>(args...) );
}
// get pointer to Resource object (nothrow, result may be null)
resource_ptr_type get_resource_ptr() const;
// this version throws
resource_ptr_type operator->() const;
// dynamic casting of the resource (throws if cast fails)
template <class T> shared_ptr<T> cast() const;
};
template <class Key, class Resource>
Key
ResourceTraits<Key, Resource>::get_key(const Resource &res) const
{
return res.get_key();
}
template <class Key, class Resource>
shared_ptr<Resource>
ResourceTraits<Key, Resource>::make_resource(const Key &key) const
{
return make_shared<Resource>(key);
}
template <class Key, class Resource>
bool
ResourceTraits<Key, Resource>::is_null_key(const Key &key) const
{
return !key;
}
template <class Key, class Resource>
Key
ResourceTraits<Key, Resource>::get_null_key() const
{
return NULL;
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::duplicate_resource::duplicate_resource(const key_type &key) :
invalid_argument("duplicate resource"),
m_key(key)
{
}
template <class Key, class Resource>
auto
ResourceHandle<Key, Resource>::duplicate_resource::get_key() const -> key_type
{
return m_key;
}
template <class Key, class Resource>
void
ResourceHandle<Key, Resource>::clean_locked()
{
// Must be called with lock held
for (auto i = s_map.begin(); i != s_map.end(); ) {
auto this_i = i;
++i;
if (this_i->second.expired()) {
s_map.erase(this_i);
}
}
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::resource_ptr_type
ResourceHandle<Key, Resource>::insert(const key_type &key)
{
// no Resources for null keys
if (s_traits.is_null_key(key)) {
return resource_ptr_type();
}
unique_lock<mutex> lock(s_map_mutex);
auto found = s_map.find(key);
if (found != s_map.end()) {
resource_ptr_type rv = found->second.lock();
if (rv) {
// Use existing Resource
return rv;
} else {
// It's OK for the map to temporarily contain an expired weak_ptr to some dead Resource
clean_locked();
}
}
// not found or expired, throw any existing ref away and make a new one
resource_ptr_type rpt = s_traits.make_resource(key);
// store weak_ptr in map
s_map[key] = rpt;
// return shared_ptr
return rpt;
};
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::resource_ptr_type
ResourceHandle<Key, Resource>::insert(const resource_ptr_type &res)
{
// no Resources for null keys
if (!res) {
return resource_ptr_type();
}
key_type key = s_traits.get_key(*res);
if (s_traits.is_null_key(key)) {
return resource_ptr_type();
}
unique_lock<mutex> lock(s_map_mutex);
// find Resource for non-null key
auto found = s_map.find(key);
if (found != s_map.end()) {
resource_ptr_type rv = found->second.lock();
// It's OK for the map to temporarily contain an expired weak_ptr to some dead Resource...
if (rv) {
// ...but not a duplicate Resource.
if (rv.owner_before(res) || res.owner_before(rv)) {
throw duplicate_resource(key);
}
// Use the existing Resource (discard the caller's).
return rv;
} else {
// Clean out expired weak_ptrs
clean_locked();
}
}
// not found or expired, make a new one or replace old one
s_map[key] = res;
return res;
};
template <class Key, class Resource>
ResourceHandle<Key, Resource>::ResourceHandle(const key_type &key)
{
m_ptr = insert(key);
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>&
ResourceHandle<Key, Resource>::operator=(const key_type &key)
{
m_ptr = insert(key);
return *this;
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::ResourceHandle(const resource_ptr_type &res)
{
m_ptr = insert(res);
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>&
ResourceHandle<Key, Resource>::operator=(const resource_ptr_type &res)
{
m_ptr = insert(res);
return *this;
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::~ResourceHandle()
{
// No pointer, nothing to do
if (!m_ptr) {
return;
}
// Save key so we can clean the map
auto key = s_traits.get_key(*m_ptr);
// Save a weak_ptr so we can tell if we need to clean the map
weak_ptr_type wp = m_ptr;
// Drop shared_ptr
m_ptr.reset();
// If there are still other references to the shared_ptr, we can stop now
if (!wp.expired()) {
return;
}
// Remove weak_ptr from map if it has expired
// (and not been replaced in the meantime)
unique_lock<mutex> lock_map(s_map_mutex);
auto found = s_map.find(key);
// Map entry may have been replaced, so check for expiry again
if (found != s_map.end() && found->second.expired()) {
s_map.erase(key);
}
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::resource_ptr_type
ResourceHandle<Key, Resource>::get_resource_ptr() const
{
return m_ptr;
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::resource_ptr_type
ResourceHandle<Key, Resource>::operator->() const
{
if (!m_ptr) {
THROW_ERROR(out_of_range, __PRETTY_FUNCTION__ << " called on null Resource");
}
return m_ptr;
}
template <class Key, class Resource>
template <class T>
shared_ptr<T>
ResourceHandle<Key, Resource>::cast() const
{
shared_ptr<T> dp;
if (!m_ptr) {
return dp;
}
dp = dynamic_pointer_cast<T>(m_ptr);
if (!dp) {
throw bad_cast();
}
return dp;
}
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::key_type
ResourceHandle<Key, Resource>::get_key() const
{
if (!m_ptr) {
return s_traits.get_null_key();
} else {
return s_traits.get_key(*m_ptr);
}
}
template <class Key, class Resource>
ResourceHandle<Key, Resource>::operator key_type() const
{
return get_key();
}
template <class Key, class Resource>
bool
ResourceHandle<Key, Resource>::operator!() const
{
return s_traits.is_null_key(operator key_type());
}
// Apparently GCC wants these to be used before they are defined.
template <class Key, class Resource>
ResourceTraits<Key, Resource> ResourceHandle<Key, Resource>::s_traits;
template <class Key, class Resource>
mutex ResourceHandle<Key, Resource>::s_map_mutex;
template <class Key, class Resource>
typename ResourceHandle<Key, Resource>::map_type ResourceHandle<Key, Resource>::s_map;
}
#endif // RESOURCE_H