1
0
mirror of https://github.com/Zygo/bees.git synced 2025-05-17 21:35:45 +02:00
bees/src/bees-context.cc
Zygo Blaxell 3a33a5386b context: add a PROGRESS: header in $BEESSTATUS
Make it clearer where the progress information goes.

Also add placeholder text so the progress section isn't empty at startup,
when the progress hasn't been calculated yet.

Signed-off-by: Zygo Blaxell <bees@furryterror.org>
2024-12-01 11:41:59 -05:00

1290 lines
40 KiB
C++

#include "bees.h"
#include "crucible/cleanup.h"
#include "crucible/limits.h"
#include "crucible/string.h"
#include "crucible/task.h"
#include <fstream>
#include <iostream>
#include <vector>
// round
#include <cmath>
// struct rusage
#include <sys/resource.h>
// struct sigset
#include <signal.h>
using namespace crucible;
using namespace std;
BeesFdCache::BeesFdCache(shared_ptr<BeesContext> ctx) :
m_ctx(ctx)
{
m_root_cache.func([&](uint64_t root) -> Fd {
Timer open_timer;
auto rv = m_ctx->roots()->open_root_nocache(root);
BEESCOUNTADD(open_root_ms, open_timer.age() * 1000);
return rv;
});
m_root_cache.max_size(BEES_ROOT_FD_CACHE_SIZE);
m_file_cache.func([&](uint64_t root, uint64_t ino) -> Fd {
Timer open_timer;
auto rv = m_ctx->roots()->open_root_ino_nocache(root, ino);
BEESCOUNTADD(open_ino_ms, open_timer.age() * 1000);
return rv;
});
m_file_cache.max_size(BEES_FILE_FD_CACHE_SIZE);
}
void
BeesFdCache::clear()
{
BEESLOGDEBUG("Clearing root FD cache with size " << m_root_cache.size() << " to enable subvol delete");
BEESNOTE("Clearing root FD cache with size " << m_root_cache.size());
m_root_cache.clear();
BEESCOUNT(root_clear);
BEESLOGDEBUG("Clearing open FD cache with size " << m_file_cache.size() << " to enable file delete");
BEESNOTE("Clearing open FD cache with size " << m_file_cache.size());
m_file_cache.clear();
BEESCOUNT(open_clear);
}
Fd
BeesFdCache::open_root(uint64_t root)
{
return m_root_cache(root);
}
Fd
BeesFdCache::open_root_ino(uint64_t root, uint64_t ino)
{
return m_file_cache(root, ino);
}
void
BeesContext::dump_status()
{
auto status_charp = getenv("BEESSTATUS");
if (!status_charp) return;
string status_file(status_charp);
BEESLOGINFO("Writing status to file '" << status_file << "' every " << BEES_STATUS_INTERVAL << " sec");
Timer total_timer;
while (!m_stop_status) {
BEESNOTE("writing status to file '" << status_file << "'");
ofstream ofs(status_file + ".tmp");
auto thisStats = BeesStats::s_global;
ofs << "TOTAL:\n";
ofs << "\t" << thisStats << "\n";
auto avg_rates = thisStats / total_timer.age();
ofs << "RATES:\n";
ofs << "\t" << avg_rates << "\n";
const auto load_stats = TaskMaster::get_current_load();
ofs << "THREADS (work queue " << TaskMaster::get_queue_count() << " of " << Task::instance_count() << " tasks, " << TaskMaster::get_thread_count() << " workers, load: current " << load_stats.current_load << " target " << load_stats.thread_target << " average " << load_stats.loadavg << "):\n";
for (auto t : BeesNote::get_status()) {
ofs << "\ttid " << t.first << ": " << t.second << "\n";
}
#if 0
// Huge amount of data, not a lot of information (yet)
ofs << "WORKERS:\n";
TaskMaster::print_workers(ofs);
ofs << "QUEUE:\n";
TaskMaster::print_queue(ofs);
#endif
ofs << "PROGRESS:\n";
ofs << get_progress();
ofs.close();
BEESNOTE("renaming status file '" << status_file << "'");
rename((status_file + ".tmp").c_str(), status_file.c_str());
BEESNOTE("idle " << BEES_STATUS_INTERVAL);
unique_lock<mutex> lock(m_stop_mutex);
if (m_stop_status) {
return;
}
m_stop_condvar.wait_for(lock, chrono::duration<double>(BEES_STATUS_INTERVAL));
}
}
void
BeesContext::set_progress(const string &str)
{
unique_lock<mutex> lock(m_progress_mtx);
m_progress_str = str;
}
string
BeesContext::get_progress()
{
unique_lock<mutex> lock(m_progress_mtx);
if (m_progress_str.empty()) {
return "[No progess estimate available]\n";
}
return m_progress_str;
}
void
BeesContext::show_progress()
{
auto lastStats = BeesStats::s_global;
Timer stats_timer;
Timer all_timer;
while (!stop_requested()) {
BEESNOTE("idle " << BEES_PROGRESS_INTERVAL);
unique_lock<mutex> lock(m_stop_mutex);
if (m_stop_requested) {
return;
}
m_stop_condvar.wait_for(lock, chrono::duration<double>(BEES_PROGRESS_INTERVAL));
// Snapshot stats and timer state
auto thisStats = BeesStats::s_global;
auto stats_age = stats_timer.age();
auto all_age = all_timer.age();
stats_timer.lap();
BEESNOTE("logging event counter totals for last " << all_timer);
BEESLOGINFO("TOTAL COUNTS (" << all_age << "s):\n\t" << thisStats);
BEESNOTE("logging event counter rates for last " << all_timer);
auto avg_rates = thisStats / all_age;
BEESLOGINFO("TOTAL RATES (" << all_age << "s):\n\t" << avg_rates);
BEESNOTE("logging event counter delta counts for last " << stats_age);
BEESLOGINFO("DELTA COUNTS (" << stats_age << "s):");
auto deltaStats = thisStats - lastStats;
BEESLOGINFO("\t" << deltaStats / stats_age);
BEESNOTE("logging event counter delta rates for last " << stats_age);
BEESLOGINFO("DELTA RATES (" << stats_age << "s):");
auto deltaRates = deltaStats / stats_age;
BEESLOGINFO("\t" << deltaRates);
BEESNOTE("logging current thread status");
const auto load_stats = TaskMaster::get_current_load();
BEESLOGINFO("THREADS (work queue " << TaskMaster::get_queue_count() << " of " << Task::instance_count() << " tasks, " << TaskMaster::get_thread_count() << " workers, load: current " << load_stats.current_load << " target " << load_stats.thread_target << " average " << load_stats.loadavg << "):");
for (auto t : BeesNote::get_status()) {
BEESLOGINFO("\ttid " << t.first << ": " << t.second);
}
// No need to log progress here, it is logged when set
lastStats = thisStats;
}
}
Fd
BeesContext::home_fd()
{
if (!!m_home_fd) {
return m_home_fd;
}
const char *base_dir = getenv("BEESHOME");
if (!base_dir) {
base_dir = ".beeshome";
}
m_home_fd = openat(root_fd(), base_dir, FLAGS_OPEN_DIR);
if (!m_home_fd) {
THROW_ERRNO("openat: " << name_fd(root_fd()) << " / " << base_dir);
}
return m_home_fd;
}
bool
BeesContext::is_root_ro(uint64_t const root)
{
return roots()->is_root_ro(root);
}
bool
BeesContext::dedup(const BeesRangePair &brp_in)
{
// TOOLONG and NOTE can retroactively fill in the filename details, but LOG can't
BEESNOTE("dedup " << brp_in);
if (is_root_ro(brp_in.second.fid().root())) {
// BEESLOGDEBUG("WORKAROUND: dst root " << (brp_in.second.fid().root()) << " is read-only);
BEESCOUNT(dedup_workaround_btrfs_send);
return false;
}
auto brp = brp_in;
brp.first.fd(shared_from_this());
brp.second.fd(shared_from_this());
BEESTOOLONG("dedup " << brp);
BeesAddress first_addr(brp.first.fd(), brp.first.begin());
BeesAddress second_addr(brp.second.fd(), brp.second.begin());
if (first_addr.get_physical_or_zero() == second_addr.get_physical_or_zero()) {
BEESLOGTRACE("equal physical addresses in dedup");
BEESCOUNT(bug_dedup_same_physical);
}
THROW_CHECK1(invalid_argument, brp, !brp.first.overlaps(brp.second));
THROW_CHECK1(invalid_argument, brp, brp.first.size() == brp.second.size());
BEESCOUNT(dedup_try);
BEESNOTE("waiting to dedup " << brp);
const auto lock = MultiLocker::get_lock("dedupe");
Timer dedup_timer;
BEESLOGINFO("dedup: src " << pretty(brp.first.size()) << " [" << to_hex(brp.first.begin()) << ".." << to_hex(brp.first.end()) << "] {" << first_addr << "} " << name_fd(brp.first.fd()) << "\n"
<< " dst " << pretty(brp.second.size()) << " [" << to_hex(brp.second.begin()) << ".." << to_hex(brp.second.end()) << "] {" << second_addr << "} " << name_fd(brp.second.fd()));
BEESNOTE("dedup: src " << pretty(brp.first.size()) << " [" << to_hex(brp.first.begin()) << ".." << to_hex(brp.first.end()) << "] {" << first_addr << "} " << name_fd(brp.first.fd()) << "\n"
<< " dst " << pretty(brp.second.size()) << " [" << to_hex(brp.second.begin()) << ".." << to_hex(brp.second.end()) << "] {" << second_addr << "} " << name_fd(brp.second.fd()));
const bool rv = btrfs_extent_same(brp.first.fd(), brp.first.begin(), brp.first.size(), brp.second.fd(), brp.second.begin());
BEESCOUNTADD(dedup_ms, dedup_timer.age() * 1000);
if (rv) {
BEESCOUNT(dedup_hit);
BEESCOUNTADD(dedup_bytes, brp.first.size());
} else {
BEESCOUNT(dedup_miss);
BEESLOGWARN("NO Dedup! " << brp);
}
return rv;
}
BeesRangePair
BeesContext::dup_extent(const BeesFileRange &src, const shared_ptr<BeesTempFile> &tmpfile)
{
BEESTRACE("dup_extent " << src);
BEESCOUNTADD(dedup_copy, src.size());
return BeesRangePair(tmpfile->make_copy(src), src);
}
void
BeesContext::rewrite_file_range(const BeesFileRange &bfr)
{
auto m_ctx = shared_from_this();
BEESNOTE("Rewriting bfr " << bfr);
auto rewrite_tmpfile = tmpfile();
BeesRangePair dup_brp(dup_extent(BeesFileRange(bfr.fd(), bfr.begin(), min(bfr.file_size(), bfr.end())), rewrite_tmpfile));
// BEESLOG("\tdup_brp " << dup_brp);
BeesBlockData orig_bbd(bfr.fd(), bfr.begin(), min(BLOCK_SIZE_SUMS, bfr.size()));
// BEESLOG("\torig_bbd " << orig_bbd);
BeesBlockData dup_bbd(dup_brp.first.fd(), dup_brp.first.begin(), min(BLOCK_SIZE_SUMS, dup_brp.first.size()));
// BEESLOG("BeesResolver br(..., " << bfr << ")");
BEESTRACE("BeesContext::rewrite_file_range calling BeesResolver " << bfr);
BeesResolver br(m_ctx, BeesAddress(bfr.fd(), bfr.begin()));
BEESTRACE("BeesContext::rewrite_file_range calling replace_src " << dup_bbd);
// BEESLOG("\treplace_src " << dup_bbd);
br.replace_src(dup_bbd);
BEESCOUNT(scan_rewrite);
// All the blocks are now somewhere else so scan again.
// We do this immediately instead of waiting for a later generation scan
// because the blocks we rewrote are likely duplicates of blocks from this
// generation that we are about to scan. Pretty ugly but effective as an
// interim solution while we wait for tree-2 extent scanning.
auto hash_table = m_ctx->hash_table();
BtrfsExtentWalker ew(bfr.fd(), bfr.begin(), root_fd());
for (off_t next_p = bfr.begin(); next_p < bfr.end(); ) {
off_t p = next_p;
next_p += BLOCK_SIZE_SUMS;
ew.seek(p);
Extent e = ew.current();
BEESTRACE("next_p " << to_hex(next_p) << " p " << to_hex(p) << " e " << e);
BeesBlockData bbd(bfr.fd(), p, min(BLOCK_SIZE_SUMS, e.end() - p));
BeesAddress addr(e, p);
bbd.addr(addr);
if (!addr.is_magic() && !bbd.is_data_zero()) {
hash_table->push_random_hash_addr(bbd.hash(), bbd.addr());
BEESCOUNT(scan_reinsert);
}
}
}
struct BeesSeenRange {
uint64_t bytenr;
off_t offset;
off_t length;
};
static
bool
operator<(const BeesSeenRange &bsr1, const BeesSeenRange &bsr2)
{
return tie(bsr1.bytenr, bsr1.offset, bsr1.length) < tie(bsr2.bytenr, bsr2.offset, bsr2.length);
}
static
__attribute__((unused))
ostream&
operator<<(ostream &os, const BeesSeenRange &tup)
{
return os << "BeesSeenRange { " << to_hex(tup.bytenr) << ", " << to_hex(tup.offset) << "+" << pretty(tup.length) << " }";
}
void
BeesContext::scan_one_extent(const BeesFileRange &bfr, const Extent &e)
{
BEESNOTE("Scanning " << pretty(e.size()) << " "
<< to_hex(e.begin()) << ".." << to_hex(e.end())
<< " " << name_fd(bfr.fd()) );
BEESTRACE("scan extent " << e);
BEESTRACE("scan bfr " << bfr);
BEESCOUNT(scan_extent);
// We keep moving this method around
auto m_ctx = shared_from_this();
shared_ptr<BeesHashTable> hash_table = m_ctx->hash_table();
if (e.flags() & ~(
FIEMAP_EXTENT_ENCODED | FIEMAP_EXTENT_UNKNOWN |
FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_LAST |
FIEMAP_EXTENT_SHARED | FIEMAP_EXTENT_NOT_ALIGNED |
FIEMAP_EXTENT_DATA_INLINE | Extent::HOLE |
Extent::OBSCURED | Extent::PREALLOC
)) {
BEESCOUNT(scan_interesting);
BEESLOGWARN("Interesting extent flags " << e << " from fd " << name_fd(bfr.fd()));
}
if (e.flags() & Extent::HOLE) {
// Nothing here, dispose of this early
BEESCOUNT(scan_hole);
return;
}
if (e.flags() & Extent::PREALLOC) {
// Prealloc is all zero and we replace it with a hole.
// No special handling is required here. Nuke it and move on.
BEESLOGINFO("prealloc extent " << e);
// Must not extend past EOF
auto extent_size = min(e.end(), bfr.file_size()) - e.begin();
// Must hold tmpfile until dedupe is done
const auto tmpfile = m_ctx->tmpfile();
BeesFileRange prealloc_bfr(tmpfile->make_hole(extent_size));
// Apparently they can both extend past EOF
BeesFileRange copy_bfr(bfr.fd(), e.begin(), e.begin() + extent_size);
BeesRangePair brp(prealloc_bfr, copy_bfr);
// Raw dedupe here - nothing else to do with this extent, nothing to merge with
if (m_ctx->dedup(brp)) {
BEESCOUNT(dedup_prealloc_hit);
BEESCOUNTADD(dedup_prealloc_bytes, e.size());
return;
} else {
BEESCOUNT(dedup_prealloc_miss);
}
}
// If we already read this extent and inserted it into the hash table, no need to read it again
static mutex s_seen_mutex;
unique_lock<mutex> lock_seen(s_seen_mutex);
const BeesSeenRange tup = {
.bytenr = e.bytenr(),
.offset = e.offset(),
.length = e.size(),
};
static set<BeesSeenRange> s_seen;
if (s_seen.size() > BEES_MAX_EXTENT_REF_COUNT) {
s_seen.clear();
BEESCOUNT(scan_seen_clear);
}
const auto seen_rv = s_seen.find(tup) != s_seen.end();
if (!seen_rv) {
BEESCOUNT(scan_seen_miss);
} else {
// BEESLOGDEBUG("Skip " << tup << " " << e);
BEESCOUNT(scan_seen_hit);
return;
}
lock_seen.unlock();
// OK we need to read extent now
bees_readahead(bfr.fd(), bfr.begin(), bfr.size());
map<off_t, pair<BeesHash, BeesAddress>> insert_map;
set<off_t> dedupe_set;
set<off_t> zero_set;
// Pretty graphs
off_t block_count = ((e.size() + BLOCK_MASK_SUMS) & ~BLOCK_MASK_SUMS) / BLOCK_SIZE_SUMS;
BEESTRACE(e << " block_count " << block_count);
string bar(block_count, '#');
// List of dedupes found
list<BeesRangePair> dedupe_list;
list<BeesFileRange> copy_list;
list<pair<BeesHash, BeesAddress>> front_hash_list;
list<uint64_t> invalidate_addr_list;
off_t next_p = e.begin();
for (off_t p = e.begin(); p < e.end(); p += BLOCK_SIZE_SUMS) {
const off_t bar_p = (p - e.begin()) / BLOCK_SIZE_SUMS;
BeesAddress addr(e, p);
// This extent should consist entirely of non-magic blocks
THROW_CHECK1(invalid_argument, addr, !addr.is_magic());
// Get block data
BeesBlockData bbd(bfr.fd(), p, min(BLOCK_SIZE_SUMS, e.end() - p));
bbd.addr(addr);
BEESCOUNT(scan_block);
BEESTRACE("scan bbd " << bbd);
// Calculate the hash first because it lets us shortcut on is_data_zero
BEESNOTE("scan hash " << bbd);
const BeesHash hash = bbd.hash();
// Weed out zero blocks
BEESNOTE("is_data_zero " << bbd);
const bool data_is_zero = bbd.is_data_zero();
if (data_is_zero) {
bar.at(bar_p) = '0';
zero_set.insert(p);
BEESCOUNT(scan_zero);
continue;
}
// Schedule this block for insertion if we decide to keep this extent.
BEESCOUNT(scan_hash_preinsert);
BEESTRACE("Pushing hash " << hash << " addr " << addr << " bbd " << bbd);
insert_map.insert(make_pair(p, make_pair(hash, addr)));
bar.at(bar_p) = 'i';
// Ensure we fill in the entire insert_map without skipping any non-zero blocks
if (p < next_p) continue;
BEESNOTE("lookup hash " << bbd);
const auto found = hash_table->find_cell(hash);
BEESCOUNT(scan_lookup);
set<BeesAddress> found_addrs;
list<BeesAddress> ordered_addrs;
for (const auto &i : found) {
BEESTRACE("found (hash, address): " << i);
BEESCOUNT(scan_found);
// Hash has to match
THROW_CHECK2(runtime_error, i.e_hash, hash, i.e_hash == hash);
// We know that there is at least one copy of the data and where it is.
// Filter out anything that can't possibly match before we pull out the
// LOGICAL_INO hammer.
BeesAddress found_addr(i.e_addr);
// If address already in hash table, move on to next extent.
// Only extents that are scanned but not modified are inserted, so if there's
// a matching hash:address pair in the hash table:
// 1. We have already scanned this extent.
// 2. We may have already created references to this extent.
// 3. We won't scan this extent again.
// The current extent is effectively "pinned" and can't be modified
// without rescanning all the existing references.
if (found_addr.get_physical_or_zero() == addr.get_physical_or_zero()) {
// No log message because this happens to many thousands of blocks
// when bees is interrupted.
// BEESLOGDEBUG("Found matching hash " << hash << " at same address " << addr << ", skipping " << bfr);
BEESCOUNT(scan_already);
return;
}
// Address is a duplicate.
// Check this early so we don't have duplicate counts.
if (!found_addrs.insert(found_addr).second) {
BEESCOUNT(scan_twice);
continue;
}
// Block must have matching EOF alignment
if (found_addr.is_unaligned_eof() != addr.is_unaligned_eof()) {
BEESCOUNT(scan_malign);
continue;
}
// Hash is toxic
if (found_addr.is_toxic()) {
BEESLOGWARN("WORKAROUND: abandoned toxic match for hash " << hash << " addr " << found_addr << " matching bbd " << bbd);
// Don't push these back in because we'll never delete them.
// Extents may become non-toxic so give them a chance to expire.
// hash_table->push_front_hash_addr(hash, found_addr);
BEESCOUNT(scan_toxic_hash);
return;
}
// Put this address in the list without changing hash table order
ordered_addrs.push_back(found_addr);
}
// Cheap filtering is now out of the way, now for some heavy lifting
for (auto found_addr : ordered_addrs) {
// Hash table says there's a matching block on the filesystem.
// Go find refs to it.
BEESNOTE("resolving " << found_addr << " matched " << bbd);
BEESTRACE("resolving " << found_addr << " matched " << bbd);
BEESTRACE("BeesContext::scan_one_extent calling BeesResolver " << found_addr);
BeesResolver resolved(m_ctx, found_addr);
// Toxic extents are really toxic
if (resolved.is_toxic()) {
BEESLOGWARN("WORKAROUND: discovered toxic match at found_addr " << found_addr << " matching bbd " << bbd);
BEESCOUNT(scan_toxic_match);
// Make sure we never see this hash again.
// It has become toxic since it was inserted into the hash table.
found_addr.set_toxic();
hash_table->push_front_hash_addr(hash, found_addr);
return;
} else if (!resolved.count()) {
BEESCOUNT(scan_resolve_zero);
// Didn't find a block at the table address, address is dead
BEESLOGDEBUG("Erasing stale addr " << addr << " hash " << hash);
hash_table->erase_hash_addr(hash, found_addr);
continue;
} else {
BEESCOUNT(scan_resolve_hit);
}
// `resolved` contains references to a block on the filesystem that still exists.
bar.at(bar_p) = 'M';
BEESNOTE("finding one match (out of " << resolved.count() << ") at " << resolved.addr() << " for " << bbd);
BEESTRACE("finding one match (out of " << resolved.count() << ") at " << resolved.addr() << " for " << bbd);
auto replaced_brp = resolved.replace_dst(bbd);
BeesFileRange &replaced_bfr = replaced_brp.second;
BEESTRACE("next_p " << to_hex(next_p) << " -> replaced_bfr " << replaced_bfr);
// If we did find a block, but not this hash, correct the hash table and move on
if (resolved.found_hash()) {
BEESCOUNT(scan_hash_hit);
} else {
BEESLOGDEBUG("Erasing stale hash " << hash << " addr " << resolved.addr());
hash_table->erase_hash_addr(hash, resolved.addr());
BEESCOUNT(scan_hash_miss);
continue;
}
// We found a block and it was a duplicate
if (resolved.found_dup()) {
THROW_CHECK0(runtime_error, replaced_bfr);
BEESCOUNT(scan_dup_hit);
// Save this match. If a better match is found later,
// it will be replaced.
dedupe_list.push_back(replaced_brp);
// Push matching block to front of LRU
front_hash_list.push_back(make_pair(hash, resolved.addr()));
// This is the block that matched in the replaced bfr
bar.at(bar_p) = '=';
// Invalidate resolve cache so we can count refs correctly
invalidate_addr_list.push_back(resolved.addr());
invalidate_addr_list.push_back(bbd.addr());
// next_p may be past EOF so check p only
THROW_CHECK2(runtime_error, p, replaced_bfr, p < replaced_bfr.end());
// We may find duplicate ranges of various lengths, so make sure
// we don't pick a smaller one
next_p = max(next_p, replaced_bfr.end());
// Stop after one dedupe is found. If there's a longer matching range
// out there, we'll find a matching block after the end of this range,
// since the longer range is longer than this one.
break;
} else {
BEESCOUNT(scan_dup_miss);
}
}
}
bool force_insert = false;
// We don't want to punch holes into compressed extents, unless:
// 1. There was dedupe of non-zero blocks, so we always have to copy the rest of the extent
// 2. The entire extent is zero and the whole thing can be replaced with a single hole
const bool extent_compressed = e.flags() & FIEMAP_EXTENT_ENCODED;
if (extent_compressed && dedupe_list.empty() && !insert_map.empty()) {
// BEESLOGDEBUG("Compressed extent with non-zero data and no dedupe, skipping");
BEESCOUNT(scan_compressed_no_dedup);
force_insert = true;
}
// FIXME: dedupe_list contains a lot of overlapping matches. Get rid of all but one.
list<BeesRangePair> dedupe_list_out;
dedupe_list.sort([](const BeesRangePair &a, const BeesRangePair &b) {
return b.second.size() < a.second.size();
});
// Shorten each dedupe brp by removing any overlap with earlier (longer) extents in list
for (auto i : dedupe_list) {
bool insert_i = true;
BEESTRACE("i = " << i << " insert_i " << insert_i);
for (const auto &j : dedupe_list_out) {
BEESTRACE("j = " << j);
// No overlap, try next one
if (j.second.end() <= i.second.begin() || j.second.begin() >= i.second.end()) {
continue;
}
// j fully overlaps or is the same as i, drop i
if (j.second.begin() <= i.second.begin() && j.second.end() >= i.second.end()) {
insert_i = false;
break;
}
// i begins outside j, i ends inside j, remove the end of i
if (i.second.end() > j.second.begin() && i.second.begin() <= j.second.begin()) {
const auto delta = i.second.end() - j.second.begin();
if (delta == i.second.size()) {
insert_i = false;
break;
}
i.shrink_end(delta);
continue;
}
// i begins inside j, ends outside j, remove the begin of i
if (i.second.begin() < j.second.end() && i.second.end() >= j.second.end()) {
const auto delta = j.second.end() - i.second.begin();
if (delta == i.second.size()) {
insert_i = false;
break;
}
i.shrink_begin(delta);
continue;
}
// i fully overlaps j, split i into two parts, push the other part onto dedupe_list
if (j.second.begin() > i.second.begin() && j.second.end() < i.second.end()) {
auto other_i = i;
const auto end_left_delta = i.second.end() - j.second.begin();
const auto begin_right_delta = i.second.begin() - j.second.end();
i.shrink_end(end_left_delta);
other_i.shrink_begin(begin_right_delta);
dedupe_list.push_back(other_i);
continue;
}
// None of the sbove. Oops!
THROW_CHECK0(runtime_error, false);
}
if (insert_i) {
dedupe_list_out.push_back(i);
}
}
dedupe_list = dedupe_list_out;
dedupe_list_out.clear();
// Count total dedupes
uint64_t bytes_deduped = 0;
for (const auto &i : dedupe_list) {
// Remove deduped blocks from insert map and zero map
for (off_t ip = i.second.begin(); ip < i.second.end(); ip += BLOCK_SIZE_SUMS) {
BEESCOUNT(scan_dup_block);
dedupe_set.insert(ip);
zero_set.erase(ip);
}
bytes_deduped += i.second.size();
}
// Copy all blocks of the extent that were not deduped or zero, but don't copy an entire extent
uint64_t bytes_zeroed = 0;
if (!force_insert) {
BEESTRACE("Rewriting extent " << e);
off_t last_p = e.begin();
off_t p = last_p;
off_t next_p = last_p;
BEESTRACE("next_p " << to_hex(next_p) << " p " << to_hex(p) << " last_p " << to_hex(last_p));
for (next_p = e.begin(); next_p < e.end(); ) {
p = next_p;
next_p = min(next_p + BLOCK_SIZE_SUMS, e.end());
// Can't be both dedupe and zero
THROW_CHECK2(runtime_error, zero_set.count(p), dedupe_set.count(p), zero_set.count(p) + dedupe_set.count(p) < 2);
if (zero_set.count(p)) {
bytes_zeroed += next_p - p;
}
// BEESLOG("dedupe_set.count(" << to_hex(p) << ") " << dedupe_set.count(p));
if (dedupe_set.count(p)) {
if (p - last_p > 0) {
THROW_CHECK2(runtime_error, p, e.end(), p <= e.end());
copy_list.push_back(BeesFileRange(bfr.fd(), last_p, p));
}
last_p = next_p;
}
}
BEESTRACE("last");
if (next_p > last_p) {
THROW_CHECK2(runtime_error, next_p, e.end(), next_p <= e.end());
copy_list.push_back(BeesFileRange(bfr.fd(), last_p, next_p));
}
}
// Don't copy an entire extent
if (!bytes_zeroed && copy_list.size() == 1 && copy_list.begin()->size() == e.size()) {
copy_list.clear();
}
// Count total copies
uint64_t bytes_copied = 0;
for (const auto &i : copy_list) {
bytes_copied += i.size();
}
BEESTRACE("bar: " << bar);
// Don't do nuisance dedupes part 1: free more blocks than we create
THROW_CHECK3(runtime_error, bytes_copied, bytes_zeroed, bytes_deduped, bytes_copied >= bytes_zeroed);
const auto cost_copy = bytes_copied - bytes_zeroed;
const auto gain_dedupe = bytes_deduped + bytes_zeroed;
if (cost_copy > gain_dedupe) {
BEESLOGDEBUG("Too many bytes copied (" << pretty(bytes_copied) << ") for bytes deduped (" << pretty(bytes_deduped) << ") and holes punched (" << pretty(bytes_zeroed) << "), skipping extent");
BEESCOUNT(scan_skip_bytes);
force_insert = true;
}
// Don't do nuisance dedupes part 2: nobody needs more than 100 dedupe/copy ops in one extent
if (dedupe_list.size() + copy_list.size() > 100) {
BEESLOGDEBUG("Too many dedupe (" << dedupe_list.size() << ") and copy (" << copy_list.size() << ") operations, skipping extent");
BEESCOUNT(scan_skip_ops);
force_insert = true;
}
// Track whether we rewrote anything
bool extent_modified = false;
// If we didn't delete the dedupe list, do the dedupes now
for (const auto &i : dedupe_list) {
BEESNOTE("dedup " << i);
if (force_insert || m_ctx->dedup(i)) {
BEESCOUNT(replacedst_dedup_hit);
THROW_CHECK0(runtime_error, i.second);
for (off_t ip = i.second.begin(); ip < i.second.end(); ip += BLOCK_SIZE_SUMS) {
if (ip >= e.begin() && ip < e.end()) {
off_t bar_p = (ip - e.begin()) / BLOCK_SIZE_SUMS;
if (bar.at(bar_p) != '=') {
if (ip == i.second.begin()) {
bar.at(bar_p) = '<';
} else if (ip + BLOCK_SIZE_SUMS >= i.second.end()) {
bar.at(bar_p) = '>';
} else {
bar.at(bar_p) = 'd';
}
}
}
}
extent_modified = !force_insert;
} else {
BEESLOGINFO("dedup failed: " << i);
BEESCOUNT(replacedst_dedup_miss);
// User data changed while we were looking up the extent, or we have a bug.
// We can't fix this, but we can immediately stop wasting effort.
return;
}
}
// Then the copy/rewrites
for (const auto &i : copy_list) {
if (!force_insert) {
rewrite_file_range(i);
extent_modified = true;
}
for (auto p = i.begin(); p < i.end(); p += BLOCK_SIZE_SUMS) {
off_t bar_p = (p - e.begin()) / BLOCK_SIZE_SUMS;
// Leave zeros as-is because they aren't really copies
if (bar.at(bar_p) != '0') {
bar.at(bar_p) = '+';
}
}
}
if (!force_insert) {
// Push matched hashes to front
for (const auto &i : front_hash_list) {
hash_table->push_front_hash_addr(i.first, i.second);
BEESCOUNT(scan_push_front);
}
// Invalidate cached resolves
for (const auto &i : invalidate_addr_list) {
m_ctx->invalidate_addr(i);
}
}
// Don't insert hashes pointing to an extent we just deleted
if (!extent_modified) {
// We did not rewrite the extent and it contained data, so insert it.
// BEESLOGDEBUG("Inserting " << insert_map.size() << " hashes from " << bfr);
for (const auto &i : insert_map) {
hash_table->push_random_hash_addr(i.second.first, i.second.second);
off_t bar_p = (i.first - e.begin()) / BLOCK_SIZE_SUMS;
if (bar.at(bar_p) == 'i') {
bar.at(bar_p) = '.';
}
BEESCOUNT(scan_hash_insert);
}
}
// Visualize
if (bar != string(block_count, '.')) {
BEESLOGINFO(
(force_insert ? "skip" : "scan") << ": "
<< pretty(e.size()) << " "
<< dedupe_list.size() << "d" << copy_list.size() << "c"
<< ((bytes_zeroed + BLOCK_SIZE_SUMS - 1) / BLOCK_SIZE_SUMS) << "p"
<< (extent_compressed ? "z {" : " {")
<< to_hex(e.bytenr()) << "+" << to_hex(e.offset()) << "} "
<< to_hex(e.begin()) << " [" << bar << "] " << to_hex(e.end())
<< ' ' << name_fd(bfr.fd())
);
}
// Put this extent into the recently seen list if we didn't rewrite it,
// and remove it if we did.
lock_seen.lock();
if (extent_modified) {
s_seen.erase(tup);
BEESCOUNT(scan_seen_erase);
} else {
// BEESLOGDEBUG("Seen " << tup << " " << e);
s_seen.insert(tup);
BEESCOUNT(scan_seen_insert);
}
lock_seen.unlock();
// Now causes 75% loss of performance in benchmarks
// bees_unreadahead(bfr.fd(), bfr.begin(), bfr.size());
}
shared_ptr<Exclusion>
BeesContext::get_inode_mutex(const uint64_t inode)
{
return m_inode_locks(inode);
}
bool
BeesContext::scan_forward(const BeesFileRange &bfr_in)
{
BEESTRACE("scan_forward " << bfr_in);
BEESCOUNT(scan_forward);
Timer scan_timer;
// Silently filter out blacklisted files
if (is_blacklisted(bfr_in.fid())) {
BEESCOUNT(scan_blacklisted);
return false;
}
// Reconstitute FD
BEESNOTE("scan open " << bfr_in);
auto bfr = bfr_in;
bfr.fd(shared_from_this());
BEESNOTE("scan extent " << bfr);
// No FD? Well, that was quick.
if (!bfr.fd()) {
// BEESLOGINFO("No FD in " << root_path() << " for " << bfr);
BEESCOUNT(scanf_no_fd);
return false;
}
// Sanity check
if (bfr.begin() >= bfr.file_size()) {
BEESLOGWARN("past EOF: " << bfr);
BEESCOUNT(scanf_eof);
return false;
}
BtrfsExtentWalker ew(bfr.fd(), bfr.begin(), root_fd());
Extent e;
bool start_over = false;
catch_all([&]() {
while (!stop_requested() && !start_over) {
e = ew.current();
catch_all([&]() {
uint64_t extent_bytenr = e.bytenr();
auto extent_mutex = m_extent_locks(extent_bytenr);
const auto extent_lock = extent_mutex->try_lock(Task::current_task());
if (!extent_lock) {
// BEESLOGDEBUG("Deferring extent bytenr " << to_hex(extent_bytenr) << " from " << bfr);
BEESCOUNT(scanf_deferred_extent);
start_over = true;
return; // from closure
}
Timer one_extent_timer;
scan_one_extent(bfr, e);
// BEESLOGDEBUG("Scanned " << e << " " << bfr);
BEESCOUNTADD(scanf_extent_ms, one_extent_timer.age() * 1000);
BEESCOUNT(scanf_extent);
});
if (e.end() >= bfr.end()) {
break;
}
if (!ew.next()) {
break;
}
}
});
BEESCOUNTADD(scanf_total_ms, scan_timer.age() * 1000);
BEESCOUNT(scanf_total);
return start_over;
}
BeesResolveAddrResult::BeesResolveAddrResult()
{
}
shared_ptr<BtrfsIoctlLogicalInoArgs>
BeesContext::logical_ino(const uint64_t logical, const bool all_refs)
{
const auto rv = m_logical_ino_pool();
rv->set_logical(logical);
rv->set_flags(all_refs ? BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET : 0);
return rv;
}
BeesResolveAddrResult
BeesContext::resolve_addr_uncached(BeesAddress addr)
{
THROW_CHECK1(invalid_argument, addr, !addr.is_magic());
THROW_CHECK0(invalid_argument, !!root_fd());
// If we look at per-thread CPU usage we get a better estimate of
// how badly btrfs is performing without confounding factors like
// transaction latency, competing threads, and freeze/SIGSTOP
// pausing the bees process.
const auto log_ino_ptr = logical_ino(addr.get_physical_or_zero(), false);
auto &log_ino = *log_ino_ptr;
// Time how long this takes
Timer resolve_timer;
struct rusage usage_before;
{
BEESNOTE("waiting to resolve addr " << addr << " with LOGICAL_INO");
const auto lock = MultiLocker::get_lock("logical_ino");
// Get this thread's system CPU usage
DIE_IF_MINUS_ONE(getrusage(RUSAGE_THREAD, &usage_before));
// Restart timer now that we're no longer waiting for lock
resolve_timer.reset();
BEESTOOLONG("Resolving addr " << addr << " in " << root_path() << " refs " << log_ino.m_iors.size());
BEESNOTE("resolving addr " << addr << " with LOGICAL_INO");
if (log_ino.do_ioctl_nothrow(root_fd())) {
BEESCOUNT(resolve_ok);
} else {
BEESCOUNT(resolve_fail);
}
BEESCOUNTADD(resolve_ms, resolve_timer.age() * 1000);
}
// Again!
struct rusage usage_after;
DIE_IF_MINUS_ONE(getrusage(RUSAGE_THREAD, &usage_after));
const double sys_usage_delta =
(usage_after.ru_stime.tv_sec + usage_after.ru_stime.tv_usec / 1000000.0) -
(usage_before.ru_stime.tv_sec + usage_before.ru_stime.tv_usec / 1000000.0);
const double user_usage_delta =
(usage_after.ru_utime.tv_sec + usage_after.ru_utime.tv_usec / 1000000.0) -
(usage_before.ru_utime.tv_sec + usage_before.ru_utime.tv_usec / 1000000.0);
const auto rt_age = resolve_timer.age();
BeesResolveAddrResult rv;
// Avoid performance problems - pretend resolve failed if there are too many refs
const size_t rv_count = log_ino.m_iors.size();
if (!rv_count) {
BEESLOGDEBUG("LOGICAL_INO returned 0 refs at " << to_hex(addr));
BEESCOUNT(resolve_empty);
}
if (rv_count < BEES_MAX_EXTENT_REF_COUNT) {
rv.m_biors = vector<BtrfsInodeOffsetRoot>(log_ino.m_iors.begin(), log_ino.m_iors.end());
} else {
BEESLOGINFO("addr " << addr << " refs " << rv_count << " overflows configured ref limit " << BEES_MAX_EXTENT_REF_COUNT);
BEESCOUNT(resolve_overflow);
}
// Avoid crippling performance bug
if (sys_usage_delta < BEES_TOXIC_SYS_DURATION) {
rv.m_is_toxic = false;
} else {
BEESLOGDEBUG("WORKAROUND: toxic address: addr = " << addr << ", sys_usage_delta = " << round(sys_usage_delta* 1000.0) / 1000.0 << ", user_usage_delta = " << round(user_usage_delta * 1000.0) / 1000.0 << ", rt_age = " << rt_age << ", refs " << rv_count);
BEESCOUNT(resolve_toxic);
rv.m_is_toxic = true;
}
// Count how many times this happens so we can figure out how
// important this case is
static const size_t max_logical_ino_v1_refs = 2730; // (65536 - header_len) / (sizeof(uint64_t) * 3)
static size_t most_refs_ever = max_logical_ino_v1_refs;
if (rv_count > most_refs_ever) {
BEESLOGINFO("addr " << addr << " refs " << rv_count << " beats previous record " << most_refs_ever);
most_refs_ever = rv_count;
}
if (rv_count > max_logical_ino_v1_refs) {
BEESCOUNT(resolve_large);
}
return rv;
}
BeesResolveAddrResult
BeesContext::resolve_addr(BeesAddress addr)
{
// All compressed offset addresses resolve to the same physical addr, so use that value for the cache
return m_resolve_cache(addr.get_physical_or_zero());
}
void
BeesContext::invalidate_addr(BeesAddress addr)
{
return m_resolve_cache.expire(addr.get_physical_or_zero());
}
void
BeesContext::resolve_cache_clear()
{
BEESNOTE("clearing resolve cache with size " << m_resolve_cache.size());
BEESLOGDEBUG("Clearing resolve cache with size " << m_resolve_cache.size());
return m_resolve_cache.clear();
}
void
BeesContext::set_root_fd(Fd fd)
{
uint64_t root_fd_treeid = btrfs_get_root_id(fd);
BEESLOGINFO("set_root_fd " << name_fd(fd));
BEESTRACE("set_root_fd " << name_fd(fd));
THROW_CHECK1(invalid_argument, root_fd_treeid, root_fd_treeid == BTRFS_FS_TREE_OBJECTID);
Stat st(fd);
THROW_CHECK1(invalid_argument, st.st_ino, st.st_ino == BTRFS_FIRST_FREE_OBJECTID);
m_root_fd = fd;
// 65536 is big enough for two max-sized extents.
// Need enough total space in the cache for the maximum number of active threads.
m_resolve_cache.max_size(65536);
m_resolve_cache.func([&](BeesAddress addr) -> BeesResolveAddrResult {
return resolve_addr_uncached(addr);
});
}
void
BeesContext::start()
{
BEESLOGNOTICE("Starting bees main loop...");
BEESNOTE("starting BeesContext");
m_extent_locks.func([](uint64_t bytenr) {
return make_shared<Exclusion>();
(void)bytenr;
});
m_inode_locks.func([](const uint64_t fid) {
return make_shared<Exclusion>();
(void)fid;
});
m_progress_thread = make_shared<BeesThread>("progress_report");
m_progress_thread = make_shared<BeesThread>("progress_report");
m_status_thread = make_shared<BeesThread>("status_report");
m_progress_thread->exec([=]() {
show_progress();
});
m_status_thread->exec([=]() {
dump_status();
});
// Set up temporary file pool
m_tmpfile_pool.generator([=]() -> shared_ptr<BeesTempFile> {
return make_shared<BeesTempFile>(shared_from_this());
});
m_logical_ino_pool.generator([]() {
const auto extent_ref_size = sizeof(uint64_t) * 3;
return make_shared<BtrfsIoctlLogicalInoArgs>(0, BEES_MAX_EXTENT_REF_COUNT * extent_ref_size + sizeof(btrfs_data_container));
});
m_tmpfile_pool.checkin([](const shared_ptr<BeesTempFile> &btf) {
catch_all([&](){
btf->reset();
});
});
// Force these to exist now so we don't have recursive locking
// operations trying to access them
fd_cache();
hash_table();
// Kick off the crawlers
roots()->start();
}
void
BeesContext::stop()
{
Timer stop_timer;
BEESLOGNOTICE("Stopping bees...");
// Stop TaskConsumers without hurting the Task objects that carry the Crawl state
BEESNOTE("pausing work queue");
BEESLOGDEBUG("Pausing work queue");
TaskMaster::pause();
// Stop crawlers first so we get good progress persisted on disk
BEESNOTE("stopping crawlers and flushing crawl state");
BEESLOGDEBUG("Stopping crawlers and flushing crawl state");
if (m_roots) {
m_roots->stop_request();
} else {
BEESLOGDEBUG("Crawlers not running");
}
BEESNOTE("stopping and flushing hash table");
BEESLOGDEBUG("Stopping and flushing hash table");
if (m_hash_table) {
m_hash_table->stop_request();
} else {
BEESLOGDEBUG("Hash table not running");
}
// Wait for crawler writeback to finish
BEESNOTE("waiting for crawlers to stop");
BEESLOGDEBUG("Waiting for crawlers to stop");
if (m_roots) {
m_roots->stop_wait();
}
// It is now no longer possible to update progress in $BEESHOME,
// so we can destroy Tasks with reckless abandon.
BEESNOTE("setting stop_request flag");
BEESLOGDEBUG("Setting stop_request flag");
unique_lock<mutex> lock(m_stop_mutex);
m_stop_requested = true;
m_stop_condvar.notify_all();
lock.unlock();
// Wait for hash table flush to complete
BEESNOTE("waiting for hash table flush to stop");
BEESLOGDEBUG("waiting for hash table flush to stop");
if (m_hash_table) {
m_hash_table->stop_wait();
}
// Write status once with this message...
BEESNOTE("stopping status thread at " << stop_timer << " sec");
lock.lock();
m_stop_condvar.notify_all();
lock.unlock();
// then wake the thread up one more time to exit the while loop
BEESLOGDEBUG("Waiting for status thread");
lock.lock();
m_stop_status = true;
m_stop_condvar.notify_all();
lock.unlock();
m_status_thread->join();
BEESLOGNOTICE("bees stopped in " << stop_timer << " sec");
// Skip all destructors, do not pass GO, do not collect atexit() functions
_exit(EXIT_SUCCESS);
}
bool
BeesContext::stop_requested() const
{
unique_lock<mutex> lock(m_stop_mutex);
return m_stop_requested;
}
void
BeesContext::blacklist_insert(const BeesFileId &fid)
{
BEESLOGDEBUG("Adding " << fid << " to blacklist");
unique_lock<mutex> lock(m_blacklist_mutex);
m_blacklist.insert(fid);
}
void
BeesContext::blacklist_erase(const BeesFileId &fid)
{
BEESLOGDEBUG("Removing " << fid << " from blacklist");
unique_lock<mutex> lock(m_blacklist_mutex);
m_blacklist.erase(fid);
}
bool
BeesContext::is_blacklisted(const BeesFileId &fid) const
{
// Everything on root 1 is blacklisted (it is mostly free space cache), no locks necessary.
if (fid.root() == 1) {
return true;
}
unique_lock<mutex> lock(m_blacklist_mutex);
return m_blacklist.find(fid) != m_blacklist.end();
}
shared_ptr<BeesTempFile>
BeesContext::tmpfile()
{
unique_lock<mutex> lock(m_stop_mutex);
lock.unlock();
return m_tmpfile_pool();
}
shared_ptr<BeesFdCache>
BeesContext::fd_cache()
{
unique_lock<mutex> lock(m_stop_mutex);
if (!m_fd_cache) {
m_fd_cache = make_shared<BeesFdCache>(shared_from_this());
}
return m_fd_cache;
}
shared_ptr<BeesRoots>
BeesContext::roots()
{
unique_lock<mutex> lock(m_stop_mutex);
if (!m_roots) {
m_roots = make_shared<BeesRoots>(shared_from_this());
}
return m_roots;
}
shared_ptr<BeesHashTable>
BeesContext::hash_table()
{
unique_lock<mutex> lock(m_stop_mutex);
if (!m_hash_table) {
m_hash_table = make_shared<BeesHashTable>(shared_from_this(), "beeshash.dat");
}
return m_hash_table;
}
void
BeesContext::set_root_path(string path)
{
BEESLOGINFO("set_root_path " << path);
m_root_path = path;
set_root_fd(open_or_die(m_root_path, FLAGS_OPEN_DIR));
}