1
0
mirror of https://github.com/Zygo/bees.git synced 2025-05-17 21:35:45 +02:00
Zygo Blaxell 0928362aab task: replace waiting state with run/exec counter
Task::run() would schedule a new execution of Task, unless it was waiting
on a queue for execution.  This cannot be implemented with a bool,
since a Task might be included in multiple queues, and should still be
in waiting state even when executed in that case.

Replace the bool with a counter.  run() and append() (but not
append_nolock) increment the counter, exec() decrements the counter.
If the counter is non-zero when run() or append() is called, the Task
is not scheduled.

Signed-off-by: Zygo Blaxell <bees@furryterror.org>
2021-06-11 20:49:15 -04:00

184 lines
4.9 KiB
C++

#ifndef CRUCIBLE_TASK_H
#define CRUCIBLE_TASK_H
#include <functional>
#include <memory>
#include <ostream>
#include <string>
namespace crucible {
using namespace std;
class TaskState;
using TaskId = uint64_t;
/// A unit of work to be scheduled by TaskMaster.
class Task {
shared_ptr<TaskState> m_task_state;
Task(shared_ptr<TaskState> pts);
public:
/// Create empty Task object.
Task() = default;
/// Create Task object containing closure and description.
Task(string title, function<void()> exec_fn);
/// Schedule Task for at most one future execution.
/// May run Task in current thread or in other thread.
/// May run Task before or after returning.
/// Schedules Task at the end of the global execution queue.
///
/// Only one instance of a Task may execute at a time.
/// If a Task is already scheduled, run() does nothing.
/// If a Task is already running when a new instance reaches
/// the front of the queue, the new instance will execute
/// after the current instance exits.
void run() const;
/// Schedule Task to run after this Task has run or
/// been destroyed.
void append(const Task &task) const;
/// Describe Task as text.
string title() const;
/// Returns currently executing task if called from exec_fn.
/// Usually used to reschedule the currently executing Task.
static Task current_task();
/// Returns number of currently existing Task objects.
/// Good for spotting leaks.
static size_t instance_count();
/// Ordering operator for containers
bool operator<(const Task &that) const;
/// Null test
operator bool() const;
/// Unique non-repeating(ish) ID for task
TaskId id() const;
};
ostream &operator<<(ostream &os, const Task &task);
class TaskMaster {
public:
/// Blocks until the running thread count reaches this number
static void set_thread_count(size_t threads);
/// Sets minimum thread count when load average tracking enabled
static void set_thread_min_count(size_t min_threads);
/// Calls set_thread_count with default
static void set_thread_count();
/// Creates thread to track load average and adjust thread count dynamically
static void set_loadavg_target(double target);
/// Writes the current non-executing Task queue
static ostream & print_queue(ostream &);
/// Writes the current executing Task for each worker
static ostream & print_workers(ostream &);
/// Gets the current number of queued Tasks
static size_t get_queue_count();
/// Gets the current number of active workers
static size_t get_thread_count();
/// Drop the current queue and discard new Tasks without
/// running them. Currently executing tasks are not
/// affected (use set_thread_count(0) to wait for those
/// to complete).
static void cancel();
};
// Barrier executes waiting Tasks once the last BarrierLock
// is released. Multiple unique Tasks may be scheduled while
// BarrierLocks exist and all will be run() at once upon
// release. If no BarrierLocks exist, Tasks are executed
// immediately upon insertion.
class BarrierState;
class BarrierLock {
shared_ptr<BarrierState> m_barrier_state;
BarrierLock(shared_ptr<BarrierState> pbs);
friend class Barrier;
public:
// Release this Lock immediately and permanently
void release();
};
class Barrier {
shared_ptr<BarrierState> m_barrier_state;
Barrier(shared_ptr<BarrierState> pbs);
public:
Barrier();
// Prevent execution of tasks behind barrier until
// BarrierLock destructor or release() method is called.
BarrierLock lock();
// Schedule a task for execution when no Locks exist
void insert_task(Task t);
};
// Exclusion provides exclusive access to a ExclusionLock.
// One Task will be able to obtain the ExclusionLock; other Tasks
// may schedule themselves for re-execution after the ExclusionLock
// is released.
class ExclusionState;
class Exclusion;
class ExclusionLock {
shared_ptr<ExclusionState> m_exclusion_state;
ExclusionLock(shared_ptr<ExclusionState> pes);
ExclusionLock() = default;
friend class Exclusion;
public:
// Calls release()
~ExclusionLock();
// Release this Lock immediately and permanently
void release();
// Test for locked state
operator bool() const;
};
class Exclusion {
shared_ptr<ExclusionState> m_exclusion_state;
Exclusion(shared_ptr<ExclusionState> pes);
public:
Exclusion(const string &title);
// Attempt to obtain a Lock. If successful, current Task
// owns the Lock until the ExclusionLock is released
// (it is the ExclusionLock that owns the lock, so it can
// be passed to other Tasks or threads, but this is not
// recommended practice).
// If not successful, current Task is expected to call
// insert_task(current_task()), release any ExclusionLock
// objects it holds, and exit its Task function.
ExclusionLock try_lock();
// Execute Task when Exclusion is unlocked (possibly
// immediately).
void insert_task(Task t = Task::current_task());
};
}
#endif // CRUCIBLE_TASK_H